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Abstract

In this paper, we present a path generation and
control strategy for a robotic manipulator to
mimic the dynamics of a continuously reconfig-
urable anisotropic impedance. Motivated by a
nonholonomic kinematic constraint, a dynamic
path generator is designed to trace a desired
contour in the robot’s workspace when an in-
teraction force is applied at the robot’s end-
effector. The proposed continuous control strat-
egy achieves semi-global asymptotically stable
path following for the robot manipulator in the
presence of uncertainty in the robot dynam-
ics. Additionally, the path generator also en-
sures safety by maintaining the desired net flow
of energy during the human robot interaction
from the user toward the manipulator. In addi-
tion to providing asymptotic path following, the
control algorithm also ensures sufficiently rapid
error convergence at the end-effector such that
the actual energy transfer profile follows the de-
sired energy transfer profile - thus rigorously en-
suring user safety. A variation of the generation
and control algorithms is presented to deal with
unknown interaction force at the end-effector.

1 Introduction

Typically, robots are used for simple, repetitive tasks in
structured environments isolated from humans. How-
ever, the last decade has seen a surge in active research
in the area of human robot interaction. Bilateral tele-
operated robots [4, 9, 10, 22], smart exercise machines
[11, 12], human assist gantry cranes [20], rehabilita-
tion robots [3, 8, 13, 14], and steer-by-wire applications
[16, 17] are among the multitude of application areas
that drive this research. A common objective of the
control algorithm design in all human robot interface
applications is to rigorously ensure user safety. Ap-
proaches based on passivity ensure that the net flow of
energy during the human robot interaction is from the

1This work is supported in part by two DOC Grants, an ARO
Automotive Center Grant, a DOE Contract, a Honda Corpora-
tion Grant, and a DARPA Contract.

user to the machine [1, 11].

The problem that is dealt with in this paper attempts
to cast the robot as a reconfigurable passive exercise
machine and is inspired by the desire to provide pas-
sive resistance therapy to patients affected by dystro-
phies in the muscles of the upper extremities that must
target specific groups of muscles in order to regain mus-
cle tone [2]. Along any desired curve of motion in 3D
space that satisfies a criterion of merit, motion is per-
mitted against a programmable apparent inertia when
the user “pushes” at the end-effector; force applied in
all other directions is penalized. In the simplest sense,
the robot essentially acts like a “wheel” (with program-
mable inertial feel for the user) on an arbitrary smooth
contoured rail that is driven by the user force at the
robot end-effector. In order to address concerns of the
robot running out of its workspace and into singular-
ities, we allow for an optional spring attached to the
“wheel” that winds up and down as the “wheel” ro-
tates and provides for workspace dependent resistance;
this ensures that a bounded interaction force leads to
bounded desired trajectories.

The strategy proposed in this paper achieves semi-
global asymptotically stable path following for an
n−link revolute robot manipulator in the presence of
uncertainty in the robot dynamics. Specifically, given
a desired curve of motion that optimizes apriori estab-
lished merit criteria, we design a generator based on
an anisotropic force-velocity relationship that generates
a bounded desired trajectory in the robot workspace
given the interaction force at the end-effector as well
as generator parameters as the inputs into the genera-
tor. The reference trajectory generator is carefully de-
signed in order to ensure that the relationship between
the interaction force and the desired end-effector ve-
locity satisfies a passivity constraint. Next, a control
strategy is crafted using a Lyapunov based argument in
order to obtain the companion objectives of driving the
end-effector tracking error to zero and ensuring that a
filtered error signal satisfies an L1 property. This con-
vergence of the filtered error signal allows us to ensure
that the interaction of the user with the robot is pas-
sive, i.e., energy always flows from the user to the robot
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manipulator. Additionally, a readily satisfiable mild as-
sumption on the differentiability of the robot dynamics
allows us to generate a control strategy that is contin-
uous; this has significant implications in terms of im-
plementability of the control algorithm. As an aside,
the control mechanism has the interesting feature of
being able learn the unknown robot dynamics dynam-
ics. We also present an extension of our controller to
the case when the interaction force measurement at the
end-effector is either unreliable or unmeasurable. In
this case, we are able to demonstrate global asymptot-
ically stable path following when the robot dynamics
are known.

This paper is organized as follows. Section 2 of the pa-
per presents details of the path generation algorithm.
In Section 3, we transform the robot dynamics into
a non-inertial frame amenable to our control design.
In Section 4, we define the error systems, measure-
ment constraints, and the assumptions under which the
analysis is valid. In Section 5, we present the design
of the control strategy. Section 6 analyzes the stability
of the closed-loop systems in addition to demonstrat-
ing the accomplishment of control objectives laid out in
Section 4. In Section 7, we present an extension of the
control algorithm to the case of unmeasurable interac-
tion force. Simulation results are presented in Section
8.

2 Path Planning

In this section, we set up a reference generator to obtain
a desired trajectory for the motion of the robot end-
effector in 3D Cartesian space. Consider an operator
specified1 desired curve of motion r̄d (s) ∈ 3 given as
follows

r̄d (s) = xd (s) ı̂+ yd (s) ĵ+ zd (s) k̂ (1)

where s (t) ∈ 1 is an arbitrary parameter along the
curve, while xd (s), yd (s), and zd (s) ∈ 1 represent
the respective coordinates in an inertial frame I (say
fixed to the base of the robot). Let vdc (t) ∈ 1 be the
yet to be chosen speed along the curve; one can then
define the following expression for ṡ (t) ∈ 1 as follows

ṡ = vdc (r̄d (s) · r̄d (s))−1/2 (2)

Let F = ū (s) , p̄ (s) , b̄ (s) be a rotating frame2 asso-
ciated with the curve r̄d (s) such that

ū (s) =
r̄d (s)

|r̄d (s)|
p̄ (s) =

ū (s)

|ū (s)|
b̄ (s) = ū (s)× p̄ (s)

(3)

1For a rehabilitation application, r̄d (s) would be chosen by
a physical therepist in order for a target set of muscles to be
exercised during a particular therapy session, e.g., maximizing
range of motion or power output for a target muscle set.

2The origin of the frame F is chosen to coincide with the
inertial frame I.

We also define the curvature κ (s) and torsion τ (s) as-
sociated with the curve as follows

κ (s) = |ū (s)|
τ (s) = −p̄ (s) · b̄ (s) (4)

We next define xd (s, t) ∈ 3 to be the desired posi-
tion of the robot end-effector expressed in the following
manner

xd = γd1ū+ γd2p̄+ γd3b̄ = Γ (s) γd (5)

where Γ (s) = ū (s) p̄ (s) b̄ (s) ∈
SO (3) is obviously defined and γd (t) =

γd1 (t) γd2 (t) γd3 (t)
T ∈ 3 denotes de-

sired end-effector position coordinates in F . By time
differentiating (5) and utilizing (3) and (4), one can
obtain the following relationship

γ̇d = ṡ [u]× γd + vd γd (0) = Γ
T (s (t0))xd0 (6)

where [u (s)]× ∈ 3×3 is the antisym-
metric matrix associated with the vector
u (s) = −τ (s) 0 −κ (s) T ∈ 3, vd (t) =

vd1 (t) vd2 (t) vd3 (t)
T ∈ 3 denotes desired

end-effector velocity coordinates in F , xd0 ∈ 3

denotes a suitably chosen point in the interior of the
robot’s workspace, while t0 denotes initial time. In
order to impose the constraint that the desired robot
end-effector trajectory xd (·) does not move in the
direction of the normal and the binormal to r̄d (s),
we must ensure the following nonholonomic kinematic
constraint

vd2 = vd3 = 0 (7)

In order to enforce this kinematic constraint, we imple-
ment an asymmetric impedance relationship between
the user applied force and the desired end-effector ve-
locity as follows

MΓv̇d +BΓvd + kΓγ̃d = Ff (8)

where MΓ = diag {m1,m2,m3} denotes a positive-
definite desired inertia matrix, BΓ = diag {b1, b2, b3}
denotes a positive-definite desired damping matrix,
kΓ ∈ 1 denotes a non-negative stiffness constant,
Ff (t) = fu (t) fp (t) fb (t)

T ∈ 3 denotes the
user applied force expressed in F , while γ̃d (t) ∈ 3

denotes an error signal that is defined as follows

γ̃d = γd − ΓT (s (t))Γ (s (t0)) γd (t0) . (9)

One can now designate arbitrary damping b1 along the
tangent as well as arbitrarily large damping b2 and b3
along the normal and the binormal in order to enforce
(7). With this choice of the desired damping matrix,
the desired speed of the robot end-effector along the
curve is vd1 (t) . Motivated by the dynamics of (8) and
the desire to ensure that the motion along the desired
curve r̄d (s) corresponds to the user application of force
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at the end-effector, we choose vdc (t) = vd1 (t) such that
s (t) evolves according to the following dynamics

ṡ = vd1 (r̄d (s) · r̄d (s))−1/2 (10)

where (2) has been utilized. We note here the special
case when s is the arc length parameter, then r̄ (s) ·
r̄ (s) = 1 and consequentially ṡ = vd1 is the speed
along the curve.

In order for a user to exercise safely in conjunction
with the robot, the robot must act as a passive device,
i.e., the work done by the user force is always positive
(minus finite stored initial energy if any). With that
objective in mind, we first demonstrate that

t

t0

F̄f · v̄ddt ≥ −c2 ⇒
t

t0

vTd Ffdt ≥ −c21 (11)

where F̄f (t) , v̄ (t) ∈ 3 denote the user force and de-
sired end-effector velocity vectors, respectively, while
c21 is a bounded, positive scalar. In order to prove (11),
we define a Lyapunov function

V =
1

2
vTdMΓvd +

1

2
kΓγ̃

T
d γ̃d ≥ 0 (12)

After taking the time derivative of (12) along the de-
sired dynamics of (6) and (8), we obtain

V̇ = −vTd BΓvd + vTd Ff (13)

where we have utilized the definition of (9) and the fact
that [u (s)]× is antisymmetric. After rearranging terms
in the above equation and integrating both sides, one
can obtain

t

t0

vTd Ffdt = V (t)− V (t0) +
t

t0

vTd BΓvddt (14)

After utilizing the fact that V (t) , vTd BT vd ≥ 0, we can
obtain an lowerbound for the left hand side of the above
equation as follows

t

t0

vTd Ffdt ≥ −V (t0) = −c21 (15)

which proves (11). In the sequel, we will show passivity
of the robot by utilizing (15) and the yet to be proved
L1 stability of the end-effector velocity tracking error.

Remark 1 If kΓ of (8) is chosen to be zero, it is pos-
sible that the desired trajectory γd (t) might lie outside
the robot’s finite workspace. In that case, one may
constrain γd (t) to lie inside the robot workspace via
a proper selection of initial conditions and the desired
curve r̄d (s). If the desired robot is chosen to have
non-zero stiffness, the reference generator dynamics de-
scribed above constrain the desired robot to mimic the
motion of a wheel on a contoured rail tethered to a

spring that is unstretched when the desired robot end-
effector is at xd0; this spring winds and unwinds as
the wheel rotates. A properly chosen interior point xd0
and stiffness kΓ ensure that a bounded interaction force
leads to desired trajectories that always lie inside the
robot’s workspace.

3 Robot Dynamics

The dynamic model for an n-link, revolute direct drive
robot manipulator is assumed to be in the following
form [19]

M(q)q̈ + Vm(q, q̇)q̇ +G(q) = τ q + Fq (16)

where M(q) ∈ n×n represents the inertia matrix,
Vm(q, q̇) ∈ n×n represents the centripetal-Coriolis
matrix, G(q) ∈ n represents the gravity effects, Fq ∈
n represents the user applied force expressed in joint
space, and τ q(t) ∈ n represents the torque input vec-
tor.

The end-effector position in the inertial frame I, de-
noted by x(t) ∈ 3, is defined as follows

x = f(q) (17)

where f(q) ∈ 3 denotes the robot forward kinemat-
ics, and q(t) ∈ n denotes the link position. Based
on (17), the differential relationships between the end-
effector position and the link position variables can be
calculated as follows

ẋ = J(q) q̇

ẍ = J̇(q)q̇ + J(q)q̈
(18)

where q̇(t), q̈(t) ∈ n denote the link velocity and accel-

eration vectors, respectively, and J(q) =
∂f(q)

∂q
∈ 3×n

denotes the manipulator Jacobian. After utilizing (17)
and (18), one can transform the joint space dynamics
into the task-space as follows

M̄ (x) ẍ+ V̄m (x, ẋ) ẋ+ Ḡ (x) = τx + Fx (19)

where M̄ (·) = J+TMJ+, V̄m (x, ẋ) =
−J+TMJ+J̇J+ + J+TVmJ

+ ∈ 3×3 denote, re-
spectively, transformed inertia and centripetal-Coriolis
matrices, Ḡ(x) = J+TG ∈ 3 represents gravity
effects, Fx (t) = J+TFq ∈ 3 represents the user
applied force expressed in I, τx(t) = J+T τq ∈ 3

represents the torque input vector expressed in I,
while J+(q) ∈ n×3 denotes a pseudo-inverse of the
manipulator Jacobian J(q). The relationship between
the end-effector position expressed in the coordinates
of I and F can be expressed as

x = Γ (s) γ (20)

where Γ (s) , x (t) have been previously defined and we
define γ (t) to be the robot end-effector position coordi-
nates in F . After utilizing the above relationship, one
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can obtain the robot dynamics in F as follows

Mf (γ)γ̈ + Vf (γ, γ̇)γ̇ +Gf (γ) = τf + Ff (21)

where Mf (·) , Vf (·) ∈ 3×3 denote, respectively,
transformed inertia and centripetal-Coriolis matrices,
Gf (·) ∈ 3 represents gravity effects, Ff (t) = ΓTFx ∈
3 represents the user applied force expressed in F ,
while τf (t) = ΓT τx ∈ 3 represents the torque input
vector expressed in F . Motivated by the subsequent
stability analysis and control design, we state the fol-
lowing property:

Property 1: The inertia matrix Mf (·) is symmetric
and positive-definite, and satisfies the following in-
equalities

m ξ 2 ξTMf (·) ξ m(γ) ξ 2 ∀ξ ∈ 3

(22)
where m ∈ denotes a positive constant, m(γ) ∈
denotes a positive nondecreasing function, while
· denotes the standard Euclidean norm.

4 Problem Formulation

Given the desired robot end-effector trajectory γd (t)
(obtained via on-line solution of (6), (8), and (10)), our
primary control objective is to asymptotically drive the
end-effector trajectory tracking error

e1 γd − γ (23)

to zero while compensating for uncertainties in the sys-
tem dynamics. Motivated by the subsequent control
design strategy, we introduce additional tracking error
variables e2 (t) , r (t) ∈ 3 as follows

e2 ė1 + e1 (24)

r ė2 + e2 (25)

Our secondary control objective is to preserve the pas-
sivity of the robot for safety of user operation in the
sense that

t

t0

vTFfdt ≥ −c2 (26)

where v(t) is the velocity of the robot and Ff (t) is the
interaction force. The control challenge is to obtain
the companion objectives mentioned above while uti-
lizing only measurements of the end-effector position,
velocity, and the interaction force. Given these mea-
surements, e1 (t) , e2 (t) are measurable variables while
r (t) is unmeasurable. Motivated by the ensuing con-
trol development and stability analysis, we make the
following set of assumptions

Assumption 1 The transformed inertia, centripetal-
Coriolis, and gravity matrices denoted, respec-
tively, by Mf (·) , Cf (·) , and Gf (·) are uncertain
but known to be second order differentiable.

Assumption 2 Ff (t) ∈ L∞ is a measurable interac-
tion force at the end-effector.

Assumption 3 The reference trajectory γd(t) is con-
tinuously differentiable up to its fourth derivative
such that γ(i)d ∈ L∞, i = 0, 1, 2, 3, 4.

Assumption 4 The parameter s along the desired
curve r̄d (s) is continuously differentiable up to
its third derivative such that s(i) ∈ L∞, i =
0, 1, 2, 3.

Assumption 5 The skew matrix [u]× is continuously
differentiable up to its second derivative such that
[u]

(i)
× ∈ L∞, i = 0, 1, 2.

Assumption 6 During the control development, we
will make the assumption that the minimum sin-
gular value of the manipulator Jacobian, de-
noted by σm is greater than a known small pos-
itive constant δ > 0, such that max { J+(q) }
is known a priori and all kinematic singulari-
ties are always avoided (Also see Remark 1).
We also note that since we are only concerned
with revolute robot manipulators, we know that
kinematic and dynamic terms denoted by M(q),
Vm(q, q̇), G(q), x(q), J(q), and J+(q) are bounded
for all possible q(t) (i.e., these kinematic and
dynamic terms only depend on q(t) as argu-
ments of trigonometric functions). From the pre-
ceding considerations, it is easy to argue that
M̄ (x) , C̄ (x, ẋ) , Ḡ (x) ,Mf (γ), Vf (γ, γ̇), Gf (γ) ∈
L∞ for all possible x (t) , ẋ (t) , γ (t) , γ̇ (t).

5 Control Design

As a primary step, we partially feedback linearize the
system by designing the control signal τf (t) as follows

τf = −Ff + τ̄f . (27)

where τ̄f (t) ∈ 3 is a yet to be designed auxiliary con-
trol signal and we have taken advantage of Assumption
2. Additionally, we simplify the system representation
of (21) by defining a generalized variable Bf (γ, γ̇) ∈ 3

as follows

Bf = Vf (γ, γ̇) γ̇ +Gf (γ). (28)

The utilization of (27) and (28) allows us to succinctly
rewrite (21) as follows

Mf γ̈ +Bf = τ̄f . (29)

Given (23-25) and (29), we can obtain the open-loop
tracking error dynamics as follows

Mf ṙ = −1
2
Ṁfr − e2−

.
τ̄f +N (30)
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where N (·) ∈ 3 is an aggregation of unknown dy-
namic terms that is explicitly defined as follows

N Mf (
...
γd +ë1+ ė2)+

.
Mf (γ̈d+

1

2
r− ë1)+ e2+

.

Bf .

(31)
In order to take advantage of the known structure of
the uncertainty in the robot dynamics, we can rewrite
N (·) as a sum of two auxiliary signals N1(t, γ, γ̇, γ̈) and
N2 (z) as follows

N =
Mf (γ)

...
γd +

.

Mf (γ, γ̇)γ̈d+
.
Bf (γ, γ̇, γ̈)

N1 (·)
+

Mf (γ)(ë1 + ė2)+
.
Mf (γ, γ̇)(

1

2
r − ë1) + e2

N2 (·)
(32)

where z (t) = eT1 (t) eT2 (t) rT (t)
T
defines a

composite error vector. Motivated by the structure of
N1 (·), we define a desired variable N1d (t) as follows

N1d(t) N(γd, γ̇d, γ̈d,
...
γd)

= Mf (γd)
...
γd +

.

Mf (γd, γ̇d)γ̈d
+

.

Bf (γd, γ̇d, γ̈d)

(33)

From Property 3 and Remark 4, it is easy to see that
N1d (t) , Ṅ1d (t) ∈ L∞. After adding and subtracting
N1d(t) to the right-hand side of (30), we have

Mf ṙ = −1
2
Ṁfr − e2−

.
τ̄f +Ñ +N1d (34)

where Ñ N − N1d is an unmeasurable error signal.
After extensive algebraic manipulations (See Appendix
A), it can be shown that Ñ (·) can be upper bounded
as follows

Ñ ρ( z ) z (35)

where the notation · denotes the standard Euclidean
norm, ρ( z ) ∈ is a positive non-decreasing func-
tion while z(t) ∈ 9 has been previously defined in
(32). Based on the structure of (34), (35) as well as the
subsequent stability analysis, we propose the following
implementable continuous control law to achieve the
stated control objectives

τ̄f = (ks + 1) e2(t)− (ks + 1) e2(t0)
+

t

t0
[(ks + 1) e2(τ) + (β1 + β2)sign(e2(τ))] dτ

(36)
where ks,β1,β2 are constant positive control gains. Af-
ter taking the time derivative of (36) and substituting
for

.
τ̄f (t) into (34), we obtain the following closed loop

system

Mf ṙ = −12Ṁfr − e2 − (ks + 1)r
−(β1 + β2)sign(e2) + Ñ +N1d.

(37)

6 Stability Analysis

Before presenting the main result of this section, we
state the following two lemmas which will be invoked
later.

Lemma 1 Let the auxiliary function L1(t) ∈ be de-
fined as follows

L1 rT (N1d − β1sign(e2)) . (38)

If the control gain β1 is selected to satisfy the sufficient
condition

β1 > N1d(t) + Ṅ1d(t) , (39)

then
t

t0

L1(τ)dτ ζb1 (40)

where the positive constant ζb1 ∈ is defined as

ζb1 β1 e2(t0) 1 − eT2 (t0)N1d(t0). (41)

where the notation · 1 denotes the L1 norm.

Proof: The proof is presented in Appendix B.

Lemma 2 Let the auxiliary function L2(t) ∈ be de-
fined as follows

L2 ėT2 (−β2sign(e2)) . (42)

It is then easy to show that

t

t0
L2(τ)dτ =

t

t0
ėT2 (−β2sign(e2)) dτ

= β2 e2(t0) 1 − β2 e2(t) 1

β2 e2(t0) 1 ζb2

(43)

We now state the main stability result for the proposed
controller in the following Theorem.

Theorem 3 The control law of (36) ensures that all
system signals are bounded under closed-loop operation
and the tracking error is asymptotically stable in the
sense that

lim
t→∞ e

(j)
i (t) = 0 ∀ i = 1, 2; j = 0, 1. (44)

Proof: The proof is presented in Appendix C.

We now turn our attention to proving the passivity of
the robot manipulator. Integrating both sides of the
bottom expression of (82), we obtain

t

t0

e2 (τ) 1 dτ
V (t0)

β2
⇒ e2(t) ∈ L1.
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Since e1 (t) is related to e2 (t) through a transfer func-
tion that is strictly proper and stable, one can use
Lemma A.8 of [15] to conclude that e1(t) ∈ L1. Now,
utilizing (24), we can also state that ė1 (t) ∈ L1. Next,
we define the velocity tracking error

ev = vd − v (45)

where vd(t) has been previously defined in (6) and
v(t) ∈ 3 denotes actual end-effector velocity coordi-
nates in F such that

v = γ̇ − ṡ[u]×γ. (46)

The work done by the interaction force on the robot is
denoted by W (t) and given by

W =
t

t0

vTFfdτ =
t

t0

vTd Ffdτ −
t

t0

eTv Ffdτ (47)

where (45) has been utilized. Since the first term on
the right hand side of (47) has been lowerbounded as
in (15), we focus our attention on the second term. We
expand the second term as follows

t

t0

eTv Ffdτ =
t

t0

ėT1 Ffdτ −
t

t0

(ṡ[u]×e1)
T
Ffdτ

where we have utilized (45), (46), (6), and (23). We
can now upperbound as follows

t

t0
eTv Ffdτ ≤ supt { Ff (t) } t

t0
ė1 (t) 1 dτ+

supt |ṡ (t) | [u]× t

t0
e1 (τ) 1dτ

≤ c22
(48)

where e1(t), ė1(t) ∈ L1 has been utilized. Additionally,
we have utilized Assumptions 3 and 4 to justify the ex-
istence of the supremum functions defined above. One
can now utilize the lowerbound of (15) and the upper-
bound of (48) in order to lowerbound W (t) as follows

W (t) ≥ −c21 − c22 = −c2

which satisfies the passivity control objective of (26).

7 Unmeasurable Interaction Force Extension

In this Section, we deal with the important problem
of compensating for uncertainty or noise in the inter-
action force measurements at the robot end-effector.
Our primary and secondary control objectives remain
the same as formulated in Section 4. We work under
Assumptions 3-6 made earlier; however, we modify As-
sumptions 1 and 2 as follows

Assumption 1 The transformed inertia, centripetal-
Coriolis, and gravity matrices denoted, respec-
tively, by Mf (·) , Cf (·) , and Gf (·) are known.

Assumption 2 Ff (t) ∈ L∞ is an unmeasurable inter-
action force at the end-effector that is second order
differentiable.

Since Ff (t) is unmeasurable, we modify the desired
end-effector velocity generator as follows

MΓv̇d +BΓvd + kΓγ̃d = F̂f (49)

where F̂f (t) is a yet to be designed interaction force
observer whileMΓ, BΓ, kΓ have previously been defined
in (8). We can now utilize the dynamics of (21) to write
an expression for the open loop tracking error dynamics
as follows

Mf ė2 =Mf γ̈d +Mf ė1 + Vf (γ, γ̇)γ̇ +Gf (γ)− τf − Ff
(50)

where we have utilized the definitions of (23) and (24).
Based on Assumptions 1 and 2 as well as the structure
of the open-loop dynamics above, we design the control
input τf (t) as follows

τf =Mf γ̈d+Mf ė1+Vf (γ, γ̇)γ̇+Gf (γ)−F̂f+τf1 (51)

where τf1 (t) ∈ 3 is an auxiliary control signal that is
yet to be defined. After substituting (51) into (50), we
can obtain the following expression

Mf ė2 = − Ff − F̂f − τf1 (52)

In order to simplify the development of the error sys-
tem, we define a measurable auxiliary error variable
y (t) Mfe2. After taking the time derivative of y (t)
along the dynamics of (52), we obtain

ẏ = Ṁfe2 − Ff − F̂f − τf1 (53)

We can now design the auxiliary input control input
signal as τf1 (t) = Ṁf (t) e2 (t) in order to obtain the
tracking error system as follows

ẏ = − Ff − F̂f (54)

After introducing a filtered tracking error variable
r̄ (t) ẏ + ᾱy (ᾱ a scalar gain constant) and taking
its time derivative along the dynamics of 54, we obtain

.
r̄= − Ḟf−

.

F̂ f + ᾱẏ (55)

where we have taken advantage of the differentiabil-
ity of the interaction force. Motivated by our desire
to design a continuous controller, we can design the
interaction force observation strategy as follows

·
F̂= −k̄sr̄ − ᾱẏ − (β3 + β4) sign(y) (56)
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where β3,β4, k̄s > 0 are constant control gains. Since
r̄ (t) , ẏ(t) are unmeasurable, an implementable form for
(56) is obtained as follows

F̂ = k̄s + ᾱ y(t0)− k̄s + ᾱ y(t)

− t

t0
(β3 + β4) sign(y(τ)) + k̄sᾱy(τ) dτ

(57)
After substituting (56) into (55), we can obtain the
following form for the closed-loop dynamics

.
r̄= −Ḟf − k̄sr̄ − (β3 + β4) sign(y) (58)

Before we delve into the stability analysis, we state and
prove the following lemmas.

Lemma 4 Let the auxiliary function L3(t) ∈ be de-
fined as follows

L3 −r̄T Ḟf + β3sgn(y) . (59)

If the control gain β3 is selected to satisfy the following
sufficient condition

β3 > Ḟf + ᾱ−1 F̈f , (60)

then
t

t0

L3(τ)dτ ζb3 (61)

where the positive constant ζb3 ∈ is defined as

ζb3 β3||y(t0)||1 − yT (t0)Ḟf (t0). (62)

Proof: The proof is similar as in Appendix B and
obtained by replacing N1d(t)with −Ḟf (t).

Lemma 5 Let the auxiliary function L4(t) ∈ be de-
fined as follows

L4 −β4ẏT sgn(y). (63)

It is then easy to show that

t

t0

L4(τ)dτ =
t

t0

−β4ẏT sgn(y) dτ
= β4||y(t0)||1 − β4||y(t)||1

β4||y(t0)||1 ζb4 (64)

We are now in a position to state the following theorem.

Theorem 6 The observation and control strategy
given by (51) and (57) ensure the boundedness of
all system signals and global asymptotic tracking
in the sense that

lim
t→∞ ei(t), ėi(t) = 0 ∀ i = 1, 2 (65)

Proof: The proof is presented in Appendix E.

8 Simulation Results

Numerical simulations were performed to illustrate the
performance of the proposed reference generator and
control law of (6), (8), (10), and (36) with a two-link
planar elbow arm whose inertia matrix M (q)can be
expressed in terms of its elements as follows

m11 = (m1 +m2) l
2
1 +m2l

2
2 + 2m2l1l2 cos q2

m12 = m21 = m2l
2
2 +m2l1l2 cos q2

m22 = m2l
2
2

, (66)

while the centripetal Coriolis vector can be expressed
in the following manner

Vm(q, q̇)q̇ =
−m2l1l2 2q̇1q̇2 + q̇

2
2 sin q2

m2l1l2q̇
2
1 sin q2

. (67)

The mass and length parameters of the manipulator
are specified as follows

m1 = 8.339 [kg] m2 = 0.772 [kg]
l1 = 0.6 [m] l2 = 0.5 [m]

The initial configuration of the two-link robot are cho-
sen as

q1 (0) = 0.2 [rad] q2 (0) = 0.1 [rad]

The desired contour is specified by a unit circular path
r̄d (s) = cos (s) ı̂ + sin (s) ĵ. The initial conditions and
parameters for the reference generator are chosen as
follows

γd(0) = 0 −1 T
[m] s (0) = 0

MΓ = diag {1, 100} [kg] BΓ = diag {4, 1e5} [Ns−1] .

The interaction force applied at the end-effector was
chosen to be FTf = 2 2 [N]. For best transient
performance, the control gains specified in (36) were
chosen to be ks = 100,β1 = 0.5,β2 = 0.5. For different
values of stiffness, the following two cases were studied:

Case 1: When the stiffness is selected as kΓ = 1
[Nm−1], the circular path can be completed and re-
peated with the user’s applied force. The resulting
task-space desired and actual manipulator position as
well as the time histories of the position errors are de-
picted in Figure 1 in Appendix F. Figure 2 in Appendix
F shows the joint control inputs τ q (t).

Case 2: When stiffness is selected as kΓ = 2 [Nm−1],
the circular path cannot be completed given the lim-
ited amount of applied interaction force. In Appen-
dix F, Figure 3 shows the resulting desired and actual
manipulator position and position errors. The control
torques τq (t) are depicted in Figure 4 in Appendix F.
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8.1 Appendix A. Proof of Bound on Ñ
We start by writing Ñ(t) from (31) and (33) as follows

Ñ = [Mf (γ)−Mf (γd)]
...
γd

+
.
Mf (γ, γ̇)−

.
Mf (γd, γ̇d) γ̈d

+
.

Bf (γ, γ̇, γ̈)−
.

Bf (γd, γ̇d, γ̈d)

+Mf (γ)(ë1 + ė2)

+
.

Mf (γ, γ̇)(
1

2
r − ë1) + e2.

(68)

To simplify the notation, we define the following aux-
iliary functions

Φbf (γ, γ̇, γ̈) Ḃf (γ, γ̇, γ̈)

Φmf (γ, γ̇, γ̈d) Ṁf (γ, γ̇)γ̈d
(69)

E =Mf (·)ë1+Mf (·)ė2+e2+Ṁf (·)1
2
r−Ṁf (·)ë1 (70)

From (23-25), it is possible to write

ė1 = e2 − e1 ė2 = r − e2 ë1 = r − 2e2 + e1
Given the definitions of (69) and (70), we can rewrite
(68) by adding and subtracting a bevy of terms as fol-
lows

Ñ = M̄f (γ)− M̄f (γd)
...
γd

+ [Φmf (γ, γ̇, γ̈d)−Φmf (γd, γ̇, γ̈d)]
+ [Φmf (γd, γ̇, γ̈d)−Φmf (γd, γ̇d, γ̈d)]
+ [Φbf (γ, γ̇, γ̈)− Φbf (γd, γ̇, γ̈)]
+ [Φbf (γd, γ̇, γ̈)−Φbf (γd, γ̇d, γ̈)]
+ [Φbf (γd, γ̇d, γ̈)−Φbf (γd, γ̇d, γ̈d)] +E.

(71)
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Given Assumption 1, we can apply the Mean Value
Theorem [6] to each bracketed term of (68) as follows

Ñ =
∂Mf (σ1)

∂σ1 σ1=ς1

e1
...
γd

+
∂Φmf (σ5, γ̇, γ̈d)

∂σ2 σ2=ς2

e1

+
∂Φmf (γd,σ3, γ̈d)

∂σ3 σ3=ς3

ė1

+
∂Φbf (σ4, γ̇, γ̈)

∂σ4 σ4=ς4

e1

+
∂Φbf (γd,σ5, γ̈)

∂σ5 σ5=ς5

ė1

+
∂Φbf (γd, γ̇d,σ6)

∂σ6 σ6=ς6

ë1 +E

(72)

where ς1(t), ς2(t), ς4(t) ∈ (γ, γd), ς3(t), ς5(t) ∈ (γ̇, γ̇d)
while ς6(t) ∈ (γ̈, γ̈d). From the preceding analysis, the
right-hand side of (72) can be succinctly expressed as

Ñ = Φz. (73)

where z(t) ∈ R9×1 is the composite error vector that
has previously been defined and Φ (γ, γ̇, γ̈, t) ∈ R3×9
is the first-order differentiable system regressor. By
virtue of its first-order differentiability, Φ (·) can be up-
perbounded as follows

Φ (γ, γ̇, γ̈, t) ≤ ρ̄ (γ, γ̇, γ̈) (74)

where ρ̄ (·) is a positive function nondecreasing in
γ(t), γ̇ (t) , and γ̈ (t). Given Assumption 3, we can uti-
lize (74) and the facts that

γ = γd − e1
γ̇ = γ̇d − e2 + e1
γ̈ = γ̈d − r + 2e2 − e1

in order to upperbound Ñ (·) as follows
Ñ ρ( z ) z

where ρ( z ) is some positive function nondecreasing
in z .

9 Appendix B: Proof of Lemma 1

After substituting (25) into (38) and then integrating
in time, we obtain

t

t0
L(τ)dτ =

t

t0
eT2 (τ) (N1d(τ)− β1sgn(e2(τ))) dτ

+
t

t0

deT2 (τ)
dτ N1d(τ)dτ

−β1 t

t0

deT2 (τ)
dτ sgn(e2(τ))dτ .

(75)
After integrating the second term on the right-hand
side of (75) by parts, we obtain the following simplified
expression

t

t0
L(τ)dτ =

t

t0
eT2 (τ) (N1d(τ)

−dN1d(τ)
dτ

− β1sgn(e2(τ)) dτ

+eT2 (t)N1d(t)− eT2 (t0)N1d(t0)
−β1 e2 (t) 1 + β1 e2 (t0) 1 .

(76)

We can now upper bound the right-hand side of (76)
as follows

t

t0
L(τ)dτ

t

t0
e2 (τ) 1 ( N1d(τ)

+ dN1d(τ)
dτ − β1 dτ

+ e2 (t) 1 ( N1d(t) − β1)
+β1 e2 (t0) 1 − eT2 (t0)N1d(t0) .

(77)
From (77), it is easy to see that if β1 is chosen according
to (39), then (40) holds.

10 Appendix C: Proof of Theorem 3

Let us define two auxiliary functions Pi(t) ∈ as fol-
lows

Pi(t) ζbi −
t

t0

Li(τ)dτ 0 ∀ i = 1, 2 (78)

where ζbi, Li(t) have been previously defined in Lem-
mas 1 and 2. Based on the non-negativity of Pi (t)
above, one can define a nonnegative function V (t) as
follows

V
1

2
eT1 e1 +

1

2
eT2 e2 +

1

2
rTMfr + P1 + P2 (79)

After taking the time derivative of (79) and utilizing
the definitions of (23-25) as well as the closed-loop dy-
namics of (37), we can conveniently rearrange the terms
to obtain the following expression for V̇ (t)

V̇ = − e1
2 − e2

2 − (ks + 1) r 2

+eT1 e2 + r
T Ñ − β2e

T
2 sgn(e2)

+ rT (N1d − β1sign(e2))− L1
− ėT2 β2sign(e2) + L2

(80)

where we have utilized the definition of (78). After
utilizing the definitions of (38) and (42) to eliminate
the bracketed terms in the above equality, we can utilize
simple algebraic manipulations to obtain the following
upperbound for V̇ (t)

V̇ ≤ −1
2
z 2 + r ρ( z ) z − ks r 2 − β2 e2 1

where z (t) is a composite error vector that has been de-
fined previously in (32). Applying the nonlinear damp-
ing argument [7] to the bracketed term above, we ob-
tain the following upperbound for V̇ (t)

V̇ −1
2

1− ρ2( z )

2ks
z
2 − β2 e2 1 (81)

From (81), it is possible to state that

V̇ −α z 2

V̇ −β2 e2 1

for ks >
1

2
ρ2( z ) (82)

where α ∈ is some positive constant of analysis. We
note here that it is possible to express the lowerbound

p. 9



on ks in terms of the initial conditions of the problem
which has been referred to in literature as a semi-global
stability result. We refer the interested reader to Ap-
pendix D for the details of such a procedure. Here
onward, our analysis is valid in the region of attraction
denoted by Ωc in (86). From (82) and the analysis in
Appendix C, it is easy to see that z (t) ∈ L∞ ∩L2 and
lim
t→∞ z

2
= 0. From the previous assertions and the

definitions of (24), (25), and (32), one readily obtains
the result of (44).

11 Appendix D: Calculation of Region of
Attraction

Following [21], we now define the region of attraction
for the system. From (82), we obtain the following
sufficient condition for the negative definiteness of V̇ (t)

z < ρ−1( 2ks) (83)

Next, we define η (t) =
[ zT (t) P1 (t) P2 (t) ]

T ∈ 11 and a
region Ω in state space as follows

Ω = η ∈ R11 η < ρ−1(
√
2ks) (84)

where the definition of η (t) indicates that Ω is a subset
of the space defined by (83). Based on Assumption 3

in Section 4, we define δ1
1

2
min {1,m} and δ2(γ)

max
1

2
m(γ), 1 ; thereby, (79) can be upper and lower

bounded as
ξ1(η) ≤ V ≤ ξ2(η) (85)

where ξ1(η) δ1 η 2 ∈ and ξ2(η) δ2(γ) η 2 ∈
. From the boundedness conditions above, we can
further find an estimate for the region of attraction of
the system as

Ωc = η ∈ Ω ξ2(η) < δ1(ρ
−1( 2ks))

2 (86)

Given (85) and (82), we can invoke Lemma 2 of [21] to
state that

lim
t→∞ z

2
= 0 ∀ η(t0) ∈ Ωc . (87)

From (86), we require

ξ2(η (t)) < δ1(ρ
−1( 2ks))

2 (88)

which implies that we can write (88) in terms of system
initial conditions as follows

η(t0) <
δ1

δ2(γ(t0))
ρ−1( 2ks), (89)

where we have taken advantage of the fact that V (t)
is either decreasing or constant for all time. We can
rewrite (89) in terms of an lowerbound on ks as follows

ks >
1

2
ρ2(

δ2(γ(t0))

δ1
η(t0) ). (90)

Given the definition of η(t), we can write

η(t0) = eT1 (t0)e1(t0) + e
T
2 (t0)e2(t0)

+[ė2(t0) + e2(t0)]
T [ė2(t0) + e2(t0)]

+P1(t0) + P2(t0))
1
2

(91)
where we have utilized the definitions of z (t) and r (t)
from (32) and (25). From (41), (43), (23), and (29), we
can obtain the following expression

ė2(t0) = γ̈d(t0) + γ̇d(t0)− γ̇(t0)
+M−1f (γ(t0))Bf (γ(t0), γ̇(t0)) .

After substituting the above expression into (91), we
can finally express η(t0) in terms of system initial
conditions as follows

η(t0) = eT1 (t0)e1(t0) + e
T
2 (t0)e2(t0)

γ̈d(t0) +M
−1
f (γ(t0))Bf (γ(t0), γ̇(t0))

+γ̇d(t0)− γ̇(t0) + e2(t0)
2

+β1 e2(t0) 1 − eT2 (t0)N1d(t0)
+β2 e2(t0) 1)

1/2
.

(92)

12 Appendix E: Proof of Theorem 6

To prove this theorem, we utilize the following non-
negative function

V
1

2
r̄T r̄ + P3 + P4 (93)

where the two auxiliary functions P3(t), P4 (t) ∈ are
defined as follows

Pi(t) ζbi −
t

t0

Li(τ)dτ 0 ∀ i = 3, 4 (94)

After taking the time derivative of (93) along (58), we
can upperbound V̇ (t) as follows

V̇ (t) ≤ −ks r̄ 2 − ᾱβ4 y 1

where we have utilized the definitions of (59), (63), and
(94). It is now easy to show that r̄ (t) , y (t) ∈ L∞∩L2.
From the previous assertions and the definitions of (24)
and (25), we can now use Lemma A.8 of [15] to state
that e1 (t) , ė1 (t) , e2 (t) , ė2 (t) ∈ L1 ∩ L∞. Given these
assertions and some signal chasing akin to the proof of
Theorem 3, we can obtain the control objectives tar-
geted in Section 4.
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13 Appendix F: Simulation Plots

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

 x
d1

,  x
1
 [m]

 x
d2

,  
x 2 [m

]

Desired and Actual Task−Space Trajectories

Desired
Actual

0 1 2 3 4 5 6 7 8

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

Time [s]

 e
x1

,  
e x2

 [m
]

Task−Space Errors

x−axis
y−axis

Figure 1: Workspace Trajectories and Errors : kΓ = 1
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Figure 2: Robot Joint Torque Inputs: kΓ = 1
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Figure 3: Workspace Trajectories and Errors : kΓ = 2
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Figure 4: Robot Joint Torque Inputs: kΓ = 2
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